LT1.2: LAPLACE TRANSFORMS SOLVING DIFFERENTIAL EQUATIONS

Example

Given the following first order differential equation, $\frac{d y}{d t}+y=3 e^{2 t}$, where $y(0)=4$.
Find $y(t)$ using Laplace Transforms.
Soln
To begin solving the differential equation we would start by taking the Laplace transform of both sides of the equation.

$$
\begin{array}{ll}
L\left[\frac{d y}{d t}+y\right]=L\left[3 e^{2 t}\right] & \begin{array}{l}
\text { Taking the Laplace Transform } \\
\text { sides of the equation. }
\end{array} \\
L\left[\frac{d y}{d t}\right]+L[y]=3 L\left[e^{2 t}\right] & \text { Separating terms. } \\
s Y-y(0)+Y=3 \times \frac{1}{s-2} & \text { Transforms as derived from tab } \\
s Y-4+Y=\frac{3}{s-2} & \text { Substituting for } y(0)=4 \\
Y(s+1)=\frac{3}{s-2}+4 & \text { Taking } Y \text { as a common factor. } \\
Y=\frac{3}{(s-2)(s+1)}+\frac{4}{(s+1)} & \\
Y=\frac{3}{(s+1)(s-2)}+\frac{4(s-2)}{(s+1)(s-2)} & \text { Making } Y \text { the subject. }
\end{array}
$$

Use partial fractions to expand $\frac{4 s-5}{(s-2)(s+1)}$

$$
\begin{aligned}
\therefore & \frac{4 s-5}{(s-2)(s+1)}=\frac{A}{s-2}+\frac{B}{s+1} \\
& 4 s-5=A(s+1)+B(s-2)
\end{aligned}
$$

By selecting appropriate values of s, we can solve for $A \& B$.
Letting $s=-1$, and substituting into the above equation gives

$$
\begin{aligned}
& 4(-1)-5=A(-1+1)+B(-1-2) \\
& -4-5=A(0)+B(-3) \\
& -9=-3 B \\
& B=\frac{-9}{-3}=3
\end{aligned}
$$

Now let $s=2$, and substitute into the same equation

$$
\begin{aligned}
& 4(2)-5=A(2+1)+B(2-2) \\
& 8-5=A(3)+B(0) \\
& 3=3 A \\
& A=\frac{3}{3}=1
\end{aligned}
$$

So

$$
\frac{4 s-5}{(s-2)(s+1)}=\frac{1}{s-2}+\frac{3}{s+1}
$$

Therefore

$$
Y=\frac{1}{s-2}+\frac{3}{s+1}
$$

To obtain a solution $y(t)$ to the differential equation from $Y(s)$ we need to find the inverse Laplace transform of Y.

$$
\begin{array}{ll}
\therefore & L^{-1}[Y]=L^{-1}\left[\frac{1}{s-2}+\frac{3}{s+1}\right] \\
\therefore & y(t)=L^{-1}\left[\frac{1}{s-2}\right]+3 L^{-1}\left[\frac{1}{s+1}\right] \\
\therefore & y(t)=e^{2 t}+3 e^{-t}
\end{array}
$$

Inverse transforms obtained from tables.

Example

Given the following first order differential equation, $y^{\prime \prime}+y^{\prime}=5 \cos 2 t ; y(0)=0 ; y^{\prime}(0)=0$ Find $y(t)$ using Laplace Transforms.
Soln:

$$
\begin{array}{ll}
& L\left[y^{\prime \prime}\right]+L\left[y^{\prime}\right]=L[5 \cos 2 t] \\
& s^{2} Y-s y(0)-y^{\prime}(0)+s Y-y(0)=\frac{5 s}{s^{2}+2^{2}} \\
& Y\left(s^{2}+s\right)=\frac{5 s}{s^{2}+4} \\
& Y=\frac{5 s}{\left(s^{2}+s\right)\left(s^{2}+4\right)} \\
& Y=\frac{5 s}{(s)(s+1)\left(s^{2}+4\right)}=\frac{5}{(s+1)\left(s^{2}+4\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}+4} \\
\therefore \quad & 5=A\left(s^{2}+4\right)+(B s+C)(s+1)
\end{array}
$$

An alternative method for solving the unknowns $A, B, \& C$ in the above equation is called "equating coefficients of powers of s ":

$$
\text { LHS }=\text { RHS }
$$

$s^{0}: 5=4 A+C \quad \mathrm{eq}^{\mathrm{n}} 1$.
$s^{1}: 0 \quad=\quad B+C \quad \mathrm{eq}^{\mathrm{n}} 2$.
$s^{2}: 0=A+B \quad \mathrm{eq}^{\mathrm{n}} 3$.

From eq	
n	$A=-B$
From eq 2	$C=-B$
Substitute in eq ${ }^{\mathrm{n}} 1$	$5=4(-B)+(-B)=-5 B$

$$
\begin{array}{ll}
\therefore & A=1, B=-1, C=1 \\
\therefore & Y=\frac{1}{s+1}+\frac{-s+1}{s^{2}+4}=\frac{1}{s+1}-\frac{s}{s^{2}+4}+\frac{1}{s^{2}+4} \\
\therefore & y(t)=L^{-1}[Y]=L^{-1}\left[\frac{1}{s+1}\right]-L^{-1}\left[\frac{s}{s^{2}+4}\right]+L^{-1}\left[\frac{1}{s^{2}+4}\right]
\end{array}
$$

From tables:

$$
y(t)=e^{-t}-\cos 2 t+\sin 2 t
$$

