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LT1.2: LAPLACE TRANSFORMS 
SOLVING DIFFERENTIAL EQUATIONS 
Example 

Given the following first order differential equation, ( ) 40where,3 2 ==+ yey
dt
dy t . 

Find ( )ty  using Laplace Transforms. 
Soln:  
 
To begin solving the differential equation we would start by taking the Laplace transform of 
both sides of the equation. 
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Taking the Laplace Transform of both 
sides of the equation. 

Separating terms. 

Transforms as derived from tables. 

Taking Y as a common factor. 

Making Y  the subject. 

Substituting for ( ) 40 =y  
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 By selecting appropriate values of s, we can solve for A & B. 

 Letting s = -1, and substituting into the above equation gives 
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 Now let s = 2, and substitute into the same equation 
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 To obtain a solution ( )ty  to the differential equation from ( )sY  we need to find the inverse 
 Laplace transform of Y . 
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Inverse transforms obtained from tables. 
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 Given the following first order differential equation, ( ) ( ) 00;00;2cos5 =′==′+′′ yytyy  

Find ( )ty  using Laplace Transforms. 
Soln:  
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 An alternative method for solving the unknowns A, B, & C in the above equation is called 

 “equating coefficients of powers of s”: 

 RHSLHS =  

 CAs += 45:0  eqn 1. 

 CBs +=0:1   eqn 2. 

 BAs +=0:2   eqn 3. 

   

From eqn 3  BA −=   

From eqn 2  BC −=  

Substitute in eqn 1 ( ) ( ) BBB 545 −=−+−=   
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From tables: 

 ( ) ttety t 2sin2cos +−= −  
 


	LT1.2: LAPLACE TRANSFORMS
	SOLVING DIFFERENTIAL EQUATIONS
	Example
	Example


