STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

LT1.3: LAPLACE TRANSFORMS

Table of Transforms and Theorems

The fundamental rule for Laplace Transforms is:

$$L[y(t)] = Y(s) = \int_{0}^{\infty} e^{-st} y(t) dt$$

Rather than perform what can be a complicated integration, a table is provided with some of the most common transforms already completed:

Transform Table:

y(t)	L[y(t)] = Y(s)
1	$L[1] = \frac{1}{s}$
Impulse function $\delta(t)$	$L[\delta(t)] = 1$
t ⁿ	$L[t^n] = \frac{n!}{s^{n+1}}$
e^{at}	$L[e^{at}] = \frac{1}{s-a}$
sin kt	$L[\sin kt] = \frac{k}{s^2 + k^2}$
$\cos kt$	$L[\cos kt] = \frac{s}{s^2 + k^2}$
sinh kt	$L[\sinh kt] = \frac{k}{s^2 - k^2}$
cosh kt	$L[\cosh kt] = \frac{s}{s^2 - k^2}$
$\frac{dy}{dt}$	$L\left[\frac{dy}{dt}\right] = sY(s) - y(0)$
$\frac{d^2 y}{dt^2}$	$L\left[\frac{d^2 y}{dt^2}\right] = s^2 Y(s) - sy(0) - y'(0)$

Laplace Transform Operational Theorems

Below are listed some of the commonly used operational theorems in Laplace Transform. This list is not comprehensive, and there are other theorems not listed here.

$$af(t) + bg(t) \qquad \qquad L[af(t) + bg(t)] = aF(s) + bG(s) \qquad \qquad a, b \in \Re$$

$$f(at) L[f(at)] = \frac{1}{a}F(s) a > 0$$

$$e^{at}f(t)$$
 $L[e^{at}f(t)] = F(s-a)$

$$f(t-\tau)H(t-\tau) \qquad \qquad L[f(t-\tau)H(t-\tau)] = e^{-\tau s}F(s)$$

$$t^{n} f(t) \qquad \qquad L[t^{n} f(t)] = (-1)^{n} \frac{d^{n} F(s)}{ds^{n}}$$

$$\frac{f(t)}{t} \qquad \qquad L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(u) du \qquad \qquad F(u) = L[f(t)]$$

$$\frac{d}{ds}f(t) \qquad \qquad L\left[\frac{d}{ds}f(t)\right] = sF(s) - f(0)$$

$$\frac{d^2}{ds^2}f(t) \qquad \qquad L\left[\frac{d^2}{ds^2}f(t)\right] = s^2F(s) - sf(0) - f'(0)$$