STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

CN1.2: POLAR FORM OF A COMPLEX NUMBER

Rectangular and Polar Form

When a complex number is expressed in the form z = x + yiit is said to be in *rectangular form.*

But a point P with Cartesian coordinates (x,y) can also be represented by the polar coordinates (r, θ) where r is the distance of the point P from the origin and θ is the angle that \overrightarrow{OP} makes with the positive x-axis

NB: $x = r\cos\theta$ and $y = r\sin\theta$ and $x^2 + y^2 = r^2$ or $r = \sqrt{x^2 + y^2}$

To express a complex number z in polar form:

$$z = x + yi$$

= $r\cos\theta + r\sin\theta i$
= $r(\cos\theta + \sin\theta i)$

which we abbreviate to $z = rcis \theta$

Modulus of z

The *modulus* of z, |z| is the distance of the point z from the origin.

$$mod z = |z| = |x + yi| = \sqrt{x^2 + y^2} = r$$

The *argument* of z, arg z, is the angle measured from the positive direction of the x-axis to \overrightarrow{OP}

If
$$\arg z = \theta$$
 then $\sin \theta = \frac{y}{|z|}$ and $\cos \theta = \frac{x}{|z|}$ and $\tan \theta = \frac{y}{x}$

An infinite number of arguments of z exist

eg If z = *i* then arg z =
$$\frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$$
.

argument and Argument of z

We define the Argument of z:

Arg z =
$$heta$$
 , where $-\pi \leq heta \leq \pi$

Examples

1. Express in polar form z = 1 - i

x = 1, y = -1 [NB: z is in the 4th quadrant]
r =
$$|z| = \sqrt{x^2 + y^2} = \sqrt{1+1} = \sqrt{2}$$

tan $\theta = \frac{y}{x} = \frac{-1}{1} = -1$
 $\theta = \tan^{-1}(-1) = \frac{-\pi}{4}$ [since z is in the 4th quadrant]
 $\therefore z = rcis\theta$
 $= \sqrt{2} cis\left(\frac{-\pi}{4}\right)$
2. Express 2 cis $\left(\frac{4\pi}{3}\right)$ in the form x + yi
 $2 cis\left(\frac{4\pi}{3}\right) = 2\left[cos\left(\frac{4\pi}{3}\right) + sin\left(\frac{4\pi}{3}\right)i\right]$

$$= 2 \times \left(-\frac{1}{2}\right) + 2 \times \left(-\frac{\sqrt{3}}{2}\right)i$$
$$= -1 - \sqrt{3}i$$

See Exercise 1 CN1.2 – Complex Numbers: Polar Form

Operations on Complex Numbers in Polar Form

Addition and Subtraction

Complex numbers in polar form are best converted to the form x + yi before addition or subtraction

Multiplication and Division

If $z_1 = r_1 cis\theta_1$ and $z_2 = r_2 cis\theta_2$ then it can be shown using trigonometric identities that

$$z_1 z_2 = r_1 r_2 cis(\theta_1 + \theta_2)$$
 and $\frac{z_1}{z_2} = \frac{r_1}{r_2} cis(\theta_1 - \theta_2)$

Examples:

1. If
$$z_1 = 2\operatorname{cis} \frac{\pi}{4}$$
 and $z_2 = -3\operatorname{cis} \frac{5\pi}{6}$ find $z_1 z_2$ in polar form, $-\pi \le \theta \le \pi$
 $z_1 z_2 = 2\operatorname{cis} \frac{\pi}{4} \times \left(-3\operatorname{cis} \frac{5\pi}{6}\right)$
 $= -6\operatorname{cis} \left(\frac{\pi}{4} + \frac{5\pi}{6}\right)$
 $= -6\operatorname{cis} \left(\frac{13\pi}{12}\right)$
 $= -6\operatorname{cis} \left(\frac{-11\pi}{12}\right)$ since $-\pi \le \theta \le \pi$

2. If
$$u = 1 + 3i$$
 and $v = 2 - i$ find $\frac{u}{v}$ in polar form with $-\pi \le \theta \le \pi$

Two approaches are possible:

See Exercise 2

CN1.2 – Complex Numbers: Polar Form

Exercises

Exercise 1

- 1. Find the polar form (in radians) of the following complex numbers:
 - (a) z = -1 + i(b) $z = -\sqrt{3} + i$ (c) z = -3i(d) z = -2 - 4i
- 2. Express each of the following complex numbers in rectangular form

(a)
$$3 \operatorname{cis} \frac{\pi}{4}$$
 (b) $\sqrt{7} \operatorname{cis} \pi$

- (c) $8 \operatorname{cis} \frac{\pi}{2}$ (d) $10 \operatorname{cis} 0.41^{\text{R}}$
- 3. If z = 2 + i and w = 1 4i find each of the following in polar form using radians where appropriate:

(a)
$$|z|$$
 (b) $|w|$ (c) Arg z (d) $|\overline{w}|$

(e) Arg(zw) (f) zw

1. Simplify

(a)
$$4cis\frac{\pi}{3} \times 3cis\frac{\pi}{4}$$
 (b) $\frac{3cis\frac{5\pi}{6}}{12cis\frac{\pi}{6}}$
2. If $u = 6cis\frac{3\pi}{4}$ and $v = 4cis\left(-\frac{\pi}{4}\right)$ express $\frac{u}{v}$ in polar form

3. If
$$z = 1 - \sqrt{3}i$$
, find \overline{z} and express both z and \overline{z} in polar form using radians.

Answers Exercise 1

1. (a)
$$\sqrt{2}cis\frac{3\pi}{4}$$
 (b) $2cis\frac{5\pi}{6}$
(c) $3cis\frac{-\pi}{2}$ (d) $\sqrt{20}cis(-2.03)^{R}$
2. (a) $\frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}}i$ (b) $-\sqrt{7}$
(c) 8i (d) $9.2 + 4i$
3. (a) $\sqrt{5}$ (b) $\sqrt{17}$ (c) 0.46^{R}
(d) $\sqrt{17}$ (e) -0.86^{R} (f) $9.22cis(-0.86)^{R}$

Exercise 2

1. (a)
$$12 \operatorname{cis} \frac{7\pi}{12}$$
 (b) $\frac{1}{4} \operatorname{cis} \frac{2\pi}{3}$
2. (a) $\frac{3}{2} \operatorname{cis} \pi$
3. $z = 2 \operatorname{cis} \left(-\frac{\pi}{3}\right)$ $\overline{z} = 2 \operatorname{cis} \left(\frac{\pi}{3}\right)$