CN1.2: POLAR FORM OF A COMPLEX NUMBER

Rectangular and Polar Form

When a complex number is expressed in the form

$$
\mathrm{z}=\mathrm{x}+\mathrm{yi}
$$

it is said to be in rectangular form.
But a point P with Cartesian coordinates (x, y) can also be represented by the polar coordinates (r, θ) where r is the distance of the point P from the origin and θ is the angle that $\overrightarrow{O P}$ makes with the positive x -axis

$\mathrm{NB}: \quad x=r \cos \theta$ and $y=r \sin \theta$
and $x^{2}+y^{2}=r^{2}$ or $r=\sqrt{x^{2}+y^{2}}$
To express a complex number z in polar form:

$$
\begin{aligned}
z & =x+y i \\
& =r \cos \theta+r \sin \theta i \\
& =r(\cos \theta+\sin \theta i)
\end{aligned}
$$

which we abbreviate to $z=r$ ris θ

So, the polar form of the complex number z is

$$
z=r \operatorname{cis} \theta
$$

$$
\text { where } r=\sqrt{x^{2}+y^{2}} \text { and } \theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

Modulus of z

The modulus of $z,|z|$ is the distance of the point z from the origin.

$$
\bmod z=|z|=|x+y i|=\sqrt{x^{2}+y^{2}}=r
$$

The argument of z, $\arg z$, is the angle measured from the positive direction of the x-axis to $\overrightarrow{O P}$

If $\arg \mathrm{z}=\theta$ then $\sin \theta=\frac{y}{|z|}$ and $\cos \theta=\frac{x}{|z|} \quad$ and $\tan \theta=\frac{y}{x}$

An infinite number of arguments of z exist

$$
\text { eg If } z=i \text { then } \arg z=\frac{\pi}{2}+2 \pi n, n \in Z \text {. }
$$

argument and Argument of z

We define the Argument of z :

$$
\operatorname{Arg} z=\theta, \text { where }-\pi \leq \theta \leq \pi
$$

Examples

1. Express in polar form $z=1-i$

$$
\begin{aligned}
& \mathrm{x}=1, \mathrm{y}=-1 \quad \text { [NB: } \mathrm{z} \text { is in the } 4^{\text {th }} \text { quadrant] } \\
& \mathrm{r}=|z|
\end{aligned}=\sqrt{x^{2}+y^{2}}=\sqrt{1+1}=\sqrt{2}, \begin{aligned}
\tan \theta & =\frac{y}{x}=\frac{-1}{1}=-1 \\
\theta & =\tan ^{-1}(-1)=\frac{-\pi}{4} \quad \text { [since } \mathrm{z} \text { is in the } 4^{\text {th }} \text { quadrant] } \\
\therefore z & =r \operatorname{cis} \theta \\
& =\sqrt{2} \operatorname{cis}\left(\frac{-\pi}{4}\right)
\end{aligned}
$$

2. Express 2 cis $\left(\frac{4 \pi}{3}\right)$ in the form $x+y i$

$$
\begin{aligned}
2 \operatorname{cis}\left(\frac{4 \pi}{3}\right) & =2\left[\cos \left(\frac{4 \pi}{3}\right)+\sin \left(\frac{4 \pi}{3}\right) i\right] \\
& =2 \times\left(-\frac{1}{2}\right)+2 \times\left(-\frac{\sqrt{3}}{2}\right) i \\
& =-1-\sqrt{3} i
\end{aligned}
$$

See Exercise 1

Operations on Complex Numbers in Polar Form

Addition and Subtraction

Complex numbers in polar form are best converted to the form $x+$ yi before addition or subtraction

Multiplication and Division

If $Z_{1}=r_{1} \operatorname{cis} \theta_{1}$ and $Z_{2}=r_{2} \operatorname{cis} \theta_{2}$ then it can be shown using trigonometric identities that

$$
z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right) \quad \text { and } \quad \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
$$

Examples:

1. If $z_{1}=2$ cis $\frac{\pi}{4}$ and $z_{2}=-3$ cis $\frac{5 \pi}{6}$ find $z_{1} z_{2}$ in polar form, $-\pi \leq \theta \leq \pi$

$$
\begin{aligned}
z_{1} z_{2} & =2 \operatorname{cis} \frac{\pi}{4} \times\left(-3 \operatorname{cis} \frac{5 \pi}{6}\right) \\
& =-6 \operatorname{cis}\left(\frac{\pi}{4}+\frac{5 \pi}{6}\right) \\
& =-6 \operatorname{cis}\left(\frac{13 \pi}{12}\right) \\
& =-6 \operatorname{cis}\left(\frac{-11 \pi}{12}\right) \quad \text { since }-\pi \leq \theta \leq \pi
\end{aligned}
$$

2. If $u=1+3 i$ and $v=2-i$ find $\frac{u}{v}$ in polar form with $-\pi \leq \theta \leq \pi$

Two approaches are possible:

$$
\begin{aligned}
& u=1+3 i \quad \text { ie. } x=1, y=3 \quad \text { OR } \\
& r=\sqrt{1^{2}+3^{2}}=\sqrt{10} \\
& \theta=\tan ^{-1}\left(\frac{3}{1}\right)=1.25^{R} \\
& \therefore u=\sqrt{10} \text { cis1.25, } \\
& \frac{u}{v}=\frac{1+3 i}{2-i} \\
& =\frac{1+3 i}{2-i} \times \frac{2+i}{2+i} \\
& =\frac{-1+7 i}{4+1} \\
& v=2-i \quad \text { ie } x=2, y=-1 \\
& r=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5} \\
& \theta=\tan ^{-1}\left(\frac{-1}{2}\right)=-0.46^{R} \\
& \therefore v=\sqrt{5} \text { cis } 0.46^{R} \\
& =\frac{-1+7 i}{5} \\
& =-\frac{1}{5}+\frac{7}{5} i \\
& \therefore x=-\frac{1}{5}, \quad y=\frac{7}{5} \\
& r=\sqrt{x^{2}+y^{2}}=\sqrt{(-0.2)^{2}+1.4^{2}}=\sqrt{2} \\
& \text { Then } \frac{u}{v}=\frac{\sqrt{10} \operatorname{cis} 1.25^{R}}{\sqrt{5} \operatorname{cis} 0.46^{R}} \\
& =\frac{\sqrt{10}}{\sqrt{5}} \operatorname{cis}(1.25+0.46)^{\mathrm{R}} \\
& \tan \theta=\frac{1.4}{-0.2}=-7, \theta=1.71^{\mathrm{R}} \\
& \therefore \frac{u}{v}=\sqrt{2} \operatorname{cis}(1.71)^{\mathrm{R}} \\
& =\sqrt{2} \operatorname{cis} 1.71^{\mathrm{R}}
\end{aligned}
$$

See Exercise 2

Exercises

Exercise 1

1. Find the polar form (in radians) of the following complex numbers:
(a) $z=-1+i$
(b) $z=-\sqrt{3}+i$
(c) $\mathrm{z}=-3 \mathrm{i}$
(d) $\mathrm{z}=-2-4 \mathrm{i}$
2. Express each of the following complex numbers in rectangular form
(a) $3 \operatorname{cis} \frac{\pi}{4}$
(b) $\sqrt{7} \operatorname{cis} \pi$
(c) $8 \operatorname{cis} \frac{\pi}{2}$
(d) 10 cis 0.41^{R}
3. If $z=2+i$ and $w=1-4 i$ find each of the following in polar form using radians where appropriate:
(a) $|z|$
(b) $|w|$
(c) $\operatorname{Arg} z$
(d) $|\bar{w}|$
(e) $\operatorname{Arg}(z w)$
(f) zw

Exercise 2

1. Simplify
(a) $4 \operatorname{cis} \frac{\pi}{3} \times 3 \operatorname{cis} \frac{\pi}{4}$
(b) $\frac{3 \operatorname{cis} \frac{5 \pi}{6}}{12 \operatorname{cis} \frac{\pi}{6}}$
2. If $u=6 \operatorname{cis} \frac{3 \pi}{4}$ and $v=4 \operatorname{cis}\left(-\frac{\pi}{4}\right)$ express $\frac{u}{v}$ in polar form
3. If $z=1-\sqrt{3} i$, find \bar{z} and express both z and \bar{z} in polar form using radians.

Answers

Exercise 1

1. (a) $\sqrt{2} \operatorname{cis} \frac{3 \pi}{4}$
(b) $2 \operatorname{cis} \frac{5 \pi}{6}$
(c) $3 \operatorname{cis} \frac{-\pi}{2}$
(d) $\sqrt{20} \operatorname{cis}(-2.03)^{R}$
2. (a) $\frac{3}{\sqrt{2}}+\frac{3}{\sqrt{2}} i$
(b) $-\sqrt{7}$
(c) 8 i
(d) $9.2+4 i$
3. (a) $\sqrt{5}$
(b) $\sqrt{17}$
(c) 0.46^{R}
(d) $\sqrt{17}$
(e) -0.86^{R}
(f) $9.22 \mathrm{cis}(-0.86)^{R}$

Exercise 2

1. (a) $12 \operatorname{cis} \frac{7 \pi}{12}$
(b) $\frac{1}{4} \operatorname{cis} \frac{2 \pi}{3}$
2. (a) $\frac{3}{2} \operatorname{cis} \pi$
3. $\mathrm{z}=2 \operatorname{cis}\left(-\frac{\pi}{3}\right) \quad \overline{\mathrm{Z}}=2 \operatorname{cis}\left(\frac{\pi}{3}\right)$
