STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

CN1.1: COMPLEX NUMBERS

Real and complex numbers

Equations such as x + 1 = 7, 3x = 10 and $x^2 - 7 = 0$ can all be solved within the real number system.

But there is no real number which satisfies $x^2 + 1 = 0$. To obtain solutions to this and other similar equations the *complex numbers* were developed.

The *imaginary* number *i* is defined such that $l^2 = -1$

ie

 $i = \sqrt{-1}$ and

NB: $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$ etc

A number z of the form z = x + yi where x and y are real numbers is called a *complex number*

x is called the *real part* of z, denoted by *Re z*, and y is called the *imaginary part* of z, denoted by *Im z*

Examples

1. If z = 5 - 3i then Re z = 5 and Im z = -3

2. If $z = \sqrt{3}i$ then Re z = 0 and Im $z = \sqrt{3}$

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal ie

a + bi = c + diif and only if a = c and b = d

Example

If
$$z_1 = x - \frac{i}{3}$$
, $z_2 = \sqrt{2} + yi$ and $z_1 = z_2$ find the values of x and y.

Re
$$z_1$$
 = Re $z_2 \implies x = \sqrt{2}$
and Im z_1 = Im $z_2 \implies y = -\frac{1}{3}$
 $\therefore x = \sqrt{2}$ and $y = -\frac{1}{3}$

Addition and Subtraction of Complex Numbers

To add or subtract complex numbers we add or subtract the real and imaginary parts separately:

 $(a + bi) \pm (c + di) = (a \pm c) + (b \pm d)i$

Examples

1.
$$(2 + 3i) + (4 - i) = (2 + 4) + (3 - 1)i$$

 $= 6 + 2i$
2. If $z_1 = 1 - i$ and $z_2 = 3 - 5i$ find $z_1 - z_2$
 $z_1 - z_2 = (1 - i) - (3 - 5i)$
 $= (1 - 3) + (-1 - (-5))i$
 $= -2 + 4i$

See Exercise 1

Multiplication of Complex Numbers

If $z_1 = a + bi$ and $z_2 = c + di$ are two complex numbers then $k z_1 = k(a + bi)$ = ka + kbiand $z_1 z_2 = (a + bi)(c + di)$

$$= ac + adi + bci + bdi2$$
$$= (ac - bd) + (ad + bc)i \qquad [since i2 = -1]$$

Examples

1. Expand and simplify i(3 + 4i)

$$i(3 + 4i) = 3i + 4i^2$$

= -4 + 3i

2. If $z_1 = 1 - i$ and $z_2 = 3 - 5i$ find $z_1 z_2$

$$z_1 \ z_2 = (1 - i)(3 - 5i)$$

= 3 - 3i - 5i + 5i²
= 3 - 8i - 5
= -2 - 8i

See Exercise 2

Complex Conjugates

A pair of complex numbers of the form a + bi and a – bi are called *complex conjugates*.

If z = x + yi then the conjugate of z is denoted by $\overline{z} = x - yi$

Eg: 2 + 3i and 2 - 3i are a conjugate pair

1-i and 1+i are a conjugate pair

-4i and 4i are a conjugate pair

NB:

The product of a conjugate pair of complex numbers is a *real* number

Since $z \overline{z} = (x + yi)(x - yi) = x^2 + y^2$

Some properties of conjugates:

If z_1 and z_2 represent two conjugate numbers then

(i) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ (ii) $\overline{z_1 \times z_2} = \overline{z_1} \times \overline{z_2}$ (iii) $= \overline{z} = z$

Examples

If
$$z = 2 - i$$
 and $w = -3 + 4i$ find
1. \overline{z} 2. $\overline{z} - \overline{w}$ 3. $\overline{z + w}$
1. $\overline{z} = 2 + i$
2. $\overline{z} - \overline{w} = 2 + i - (-3 - 4i)$
 $= 2 + 3 + i + 4i$
 $= 5 + 5i$
3. $\overline{z + w} = \overline{2 - i + (-3 + 4i)}$
 $= -1 + 3i$
 $= -1 - 3i$

See Exercise 3

Division of complex numbers

If $z_1 = a + bi$ and $z_2 = c + di$, then $\frac{z_1}{z_2} = \frac{a + bi}{c + di}$.

To express $\frac{z_1}{z_2}$ in the form x + yi we make use of the conjugate to '*realize*' the denominator.

Examples

1. Express
$$\frac{2-i}{1+3i}$$
 in the form $x + yi$
 $\frac{2-i}{1+3i} = \frac{2-i}{1+3i} \times \frac{1-3i}{1-3i}$
 $= \frac{2-i-6i-3}{1+9}$
 $= \frac{-1-7i}{10}$
 $= -\frac{1}{10} - \frac{7}{10}i$

Operations on fractions involving complex numbers follow the same rules as algebraic fractions

2.
$$\frac{i}{1-4i} + \frac{2}{3+i} = \frac{i}{1-4i} \cdot \frac{1+4i}{1+4i} + \frac{2}{3+i} \cdot \frac{3-i}{3-i}$$
 [to rationalize denominators]

$$= \frac{i-4}{1+16} + \frac{6-2i}{9+1}$$

$$= \frac{i-4}{17} + \frac{6-2i}{10}$$

$$= \frac{i-4}{17} \cdot \frac{10}{10} + \frac{6-2i}{10} \cdot \frac{17}{17}$$
[170 is a common denominator]

$$= \frac{10i - 40}{170} + \frac{102 - 34i}{170}$$

$$= \frac{10i - 40 + 102 - 34i}{170}$$

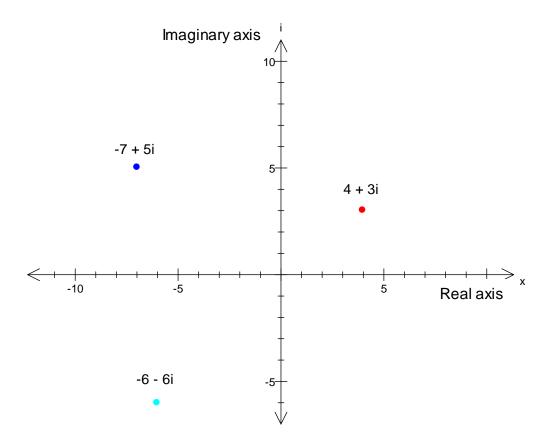
$$= \frac{62 - 24i}{170}$$

$$= \frac{2(31 - 12i)}{170}$$

$$= \frac{31 - 12i}{85}$$

See Exercise 4

An *Argand Diagram* is a geometrical representation of the set of complex numbers. The complex number z = x + yi can plotted as a point represented by the ordered pair (x, y) on the complex number plane:



See Exercise 5

Exercises

Exercise 1

1. Express the following in terms of i in simplest surd form

(a)
$$\sqrt{-9}$$
 (b) $\sqrt{-2}$ (c) $\sqrt{-5} \times \sqrt{3}$
(d) $\sqrt{-5} \times \sqrt{10}$ (e) $\sqrt{-6} \times \sqrt{12}$

2. Evaluate

(a)
$$i^4$$
 (b) i^9 (c) $i^7 - i^{11}$ (d) $i^5 + i^6 - i^7$ (e) $2i - i^6 + 2i^7$

3. State the value of *Re z* and *Im z* for these complex numbers:

(a)
$$2 + 7i$$
 (b) $10 - i$ (c) $\pi + 3i$ (d) $\frac{i}{6}$ (e) -8
Find the values of x and y
(a) $x + yi = 4 + 9i$ (b) $x + yi = 3 - i$
(c) $x + yi = 23$ (d) $x + yi = -\sqrt{2}i$
(e) $x + i = -5 + yi$

Exercise 2

4.

- 1. Expand and simplify (a) i(3 - 2i) (b) $2i^{3}(1 - 5i)$ (c) (8 - 3i)(2 - 5i)(d) $(4 - 3i)^{2}$ (e) (3 + 2i)(3 - 2i)
- 2. If $z_1 = -1 + 3i$ and $z_2 = 2 i$ find each of the following (a) $z_1 z_2$ (b) $2 z_1 - z_2$ (c) $(z_1 - z_2)^2$
- 3. Find the value of x and y if (x + yi)(2 3i) = -13i

Exercise 3

- 1. Find the conjugate of each of the following complex numbers: (a) 4 + 9i (b) -3-15i (c) $\sqrt{3} - 4i$
- 2. Find the conjugate of (2 i)(4 + 7i)
- 3. If z = 2 i and w = 1 + 2i express the following in the form x + yi:

(a)
$$\overline{z}$$
 (b) $\overline{z+w}$ (c) $\overline{z}+W$ (d) \overline{zw} (e) $\overline{\overline{z-w}}$

Exercise 4

- 1. Express the following in the form x + yi4 - 9i 1
 - (a) $\frac{4-9i}{3}$ (b) $\frac{1}{3-i}$ (c) $\frac{5+i}{2-7i}$
- 2. Simplify $\frac{2}{1-i} + \frac{3+i}{i}$ 3. If w = -1 + 6i express $\frac{w+1}{w-i}$ in the form x + yi

Exercise 5

If z = 2 - 3i and w = 1 + 4i, illustrate on an Argand diagram 1. z 2. w 3. z + w 4. $\overline{z + w}$ 5. 2z - w

Answers Exercise 1

1.	(a) 3i	(b)	$\sqrt{2}i$	(C)	$\sqrt{15i}$	(d)	$5\sqrt{2}$	i	(e)	6√2	2i
2.	(a) 1	(b)	i	(C)	0	(d)	2i -	1		(e)	1
3.	(a) <i>Re z =</i> 2		<i>lm z =</i> 7			(b) <i>Re z = ²</i>	10	<i>lm z =</i> -	1		
	(c) <i>Re z = 1</i>	τ	<i>lm z</i> = 3			(d) <i>Re z =</i> 0)		1 		
	(e) <i>Re z = -</i>	8	lm z = 0						0		
4.	(a) $x = 4$, (c) $x = 23$, (e) $x = -5$,	y =	0			(b) x = 3, (d) x = 0,	-				
1 2.	ercise 2 (a) 2 + 3i (a) 1 + 7i x = 3, y =	(k	,		• •		(d)	7 – 24i		(e)	13

Exercise 3
1 (a)
$$4 - 9i$$
 (b) $-3 + 15i$ (c) $\sqrt{3} + 4i$
2. $15 - 10i$
3. (a) $2 + i$ (b) $3 - i$ (c) $3 - i$
(d) $4 - 3i$ (e) $1 - 3i$
Exercise 4
1 (a) $\frac{4}{3} - 3i$ (b) $\frac{3}{10} + \frac{1}{10}i$ (c) $\frac{3}{53} + \frac{37}{53}i$
2 $2 - 2i$
3 $\frac{15}{13} - \frac{3}{13}i$