CN1.1: COMPLEX NUMBERS

Real and complex numbers

Equations such as $x+1=7, \quad 3 x=10$ and $x^{2}-7=0 \quad$ can all be solved within the real number system.
But there is no real number which satisfies $x^{2}+1=0$. To obtain solutions to this and other similar equations the complex numbers were developed.

The imaginary number i is defined such that $i^{2}=-1$
ie

$$
i=\sqrt{-1}
$$

and

NB: $i^{2}=-1, \quad i^{3}=-i, \quad i^{4}=1, \quad i^{5}=i \quad$ etc

A number z of the form $z=x+y i \quad$ where x and y are real numbers is called a complex number
x is called the real part of z , denoted by $\operatorname{Re} z$, and y is called the imaginary part of z , denoted by $\operatorname{Im} z$

Examples

1. If $z=5-3 i$ then $\operatorname{Re} z=5$ and $\operatorname{Im} z=-3$
2. If $z=\sqrt{3} i$ then $\operatorname{Re} z=0$ and $\operatorname{Im} z=\sqrt{3}$

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal
ie

$$
\begin{gathered}
a+b i=c+d i \\
\text { if and only if } \\
a=c \text { and } b=d
\end{gathered}
$$

Example

If $z_{1}=x-\frac{i}{3}, z_{2}=\sqrt{2}+y i$ and $z_{1}=z_{2}$ find the values of x and y.
$\operatorname{Re} z_{1}=\operatorname{Re} z_{2} \Rightarrow x=\sqrt{2}$
and $\operatorname{Im} z_{1}=\operatorname{Im} z_{2} \Rightarrow y=-\frac{1}{3}$
$\therefore x=\sqrt{2}$ and $y=-\frac{1}{3}$

Addition and Subtraction of Complex Numbers

To add or subtract complex numbers we add or subtract the real and imaginary parts separately:

$$
(a+b i) \pm(c+d i)=(a \pm c)+(b \pm d) i
$$

Examples

1. $(2+3 i)+(4-i)=(2+4)+(3-1) i$

$$
=6+2 i
$$

2. If $z_{1}=1-i$ and $z_{2}=3-5 i$ find $z_{1}-z_{2}$

$$
\begin{aligned}
z_{1}-z_{2} & =(1-i)-(3-5 i) \\
& =(1-3)+(-1-(-5)) i \\
& =-2+4 i
\end{aligned}
$$

See Exercise 1

Multiplication of Complex Numbers

If $z_{1}=\mathrm{a}+\mathrm{bi}$ and $z_{2}=\mathrm{c}+\mathrm{di}$ are two complex numbers then

$$
\begin{aligned}
k z_{1} & =k(a+b i) \\
& =k a+k b i
\end{aligned}
$$

and

$$
\begin{aligned}
z_{1} z_{2} & =(a+b i)(c+d i) \\
& =a c+a d i+b c i+b d i^{2} \\
& =(a c-b d)+(a d+b c) i \quad\left[\text { since } i^{2}=-1\right]
\end{aligned}
$$

Examples

1. Expand and simplify $i(3+4 i)$

$$
\begin{aligned}
i(3+4 i)= & 3 i+4 i^{2} \\
= & -4+3 i
\end{aligned}
$$

2. If $z_{1}=1$ - i and $z_{2}=3$ - $5 i$ find $z_{1} z_{2}$

$$
\begin{aligned}
& z_{1} z_{2}=(1-i)(3-5 i) \\
= & 3-3 i-5 i+5 i^{2} \\
= & 3-8 i-5 \\
= & -2-8 i
\end{aligned}
$$

See Exercise 2

Complex Conjugates

A pair of complex numbers of the form $\mathrm{a}+\mathrm{bi}$ and $\mathrm{a}-\mathrm{bi}$ are called complex conjugates.
If $z=x+y i$ then the conjugate of z is denoted by $\bar{z}=x-y i$

Eg: $2+3 i$ and $2-3 i$ are a conjugate pair
$1-i$ and $1+i$ are a conjugate pair
$-4 i$ and $4 i$ are a conjugate pair

NB:
The product of a conjugate pair of complex numbers is a rea/ number

Since $z \bar{z}=(x+y i)(x-y i)=x^{2}+y^{2}$
Some properties of conjugates:

If Z_{1} and Z_{2} represent two conjugate numbers then
(i) $\overline{Z_{1}+Z_{2}}=\overline{Z_{1}}+\overline{Z_{2}}$
(ii) $\overline{Z_{1} \times Z_{2}}=\overline{Z_{1}} \times \overline{Z_{2}}$
(iii) $\overline{\bar{Z}}=Z$

Examples

If $z=2-i$ and $w=-3+4 i$ find

1. \bar{Z}
2. $\bar{Z}-\bar{W}$
3. $Z+w$
4. $\bar{Z}=2+i$
5. $\bar{Z}-\bar{w}=2+\mathrm{i}-(-3-4 \mathrm{i})$

$$
=2+3+i+4 i
$$

$$
=5+5 i
$$

3. $\overline{z+w}=\overline{2-i+(-3+4 i)}$

$$
\begin{aligned}
& =-1+3 i \\
& =-1-3 i
\end{aligned}
$$

See Exercise 3

Division of complex numbers
If $z_{1}=\mathrm{a}+$ bi and $z_{2}=\mathrm{c}+\mathrm{di}$, then $\frac{z_{1}}{z_{2}}=\frac{a+b i}{c+d i}$.
To express $\frac{z_{1}}{z_{2}}$ in the form $\mathrm{x}+$ yi we make use of the conjugate to 'realize'the denominator.
Examples

1. Express $\frac{2-i}{1+3 i}$ in the form $x+y i$

$$
\begin{aligned}
\frac{2-i}{1+3 i} & =\frac{2-i}{1+3 i} \times \frac{1-3 i}{1-3 i} \\
& =\frac{2-i-6 i-3}{1+9} \\
& =\frac{-1-7 i}{10} \\
& =-\frac{1}{10}-\frac{7}{10} i
\end{aligned}
$$

Operations on fractions involving complex numbers follow the same rules as algebraic fractions

$$
\text { 2. } \begin{aligned}
\frac{i}{1-4 i}+\frac{2}{3+i} & =\frac{i}{1-4 i} \cdot \frac{1+4 i}{1+4 i}+\frac{2}{3+i} \cdot \frac{3-i}{3-i} \quad \text { [to rationalize denominators] } \\
& =\frac{i-4}{1+16}+\frac{6-2 i}{9+1} \\
& =\frac{i-4}{17}+\frac{6-2 i}{10} \\
& =\frac{i-4}{17} \cdot \frac{10}{10}+\frac{6-2 i}{10} \cdot \frac{17}{17} \quad \text { [170 is a common denominator] } \\
& =\frac{10 i-40}{170}+\frac{102-34 i}{170} \\
& =\frac{10 i-40+102-34 i}{170} \\
& =\frac{62-24 i}{170} \\
& =\frac{2(31-12 i)}{170} \\
& =\frac{31-12 i}{85}
\end{aligned}
$$

See Exercise 4

An Argand Diagram is a geometrical representation of the set of complex numbers. The complex number $\boldsymbol{z}=\boldsymbol{x}$ $+y i$ can plotted as a point represented by the ordered pair (x, y) on the complex number plane:

See Exercise 5

Exercises

Exercise 1

1. Express the following in terms of i in simplest surd form
(a) $\sqrt{-9}$
(b) $\sqrt{-2}$
(c) $\sqrt{-5} \times \sqrt{3}$
(d) $\sqrt{-5} \times \sqrt{10}$
(e) $\sqrt{-6} \times \sqrt{12}$
2. Evaluate
(a) i^{4}
(b) i^{9}
(c) $i^{7}-i^{11}$
(d) $i^{5}+i^{6}-i^{7}$
(e) $2 i-i^{6}+2 i^{7}$
3. State the value of $R e z$ and $/ m z$ for these complex numbers:
(a) $2+7 i$
(b) $10-\mathrm{i}$
(c) $\pi+3 \mathrm{i}$
(d) $\frac{i}{6}$
(e) -8
4. Find the values of x and y
(a) $x+y i=4+9 i$
(b) $\mathrm{x}+\mathrm{yi}=3-\mathrm{i}$
(c) $x+y i=23$
(d) $\mathrm{x}+\mathrm{yi}=-\sqrt{2} \mathrm{i}$
(e) $x+i=-5+y i$

Exercise 2

1. Expand and simplify
(a) $\mathrm{i}(3-2 \mathrm{i})$
(b) $2 i^{3}(1-5 i)$
(c) $(8-3 i)(2-5 i)$
(d) $(4-3 i)^{2}$
(e) $(3+2 i)(3-2 i)$
2. If $z_{1}=-1+3 i$ and $z_{2}=2-i$ find each of the following
(a) $Z_{1} Z_{2}$
(b) $2 z_{1}-z_{2}$
(c) $\left(Z_{1}-Z_{2}\right)^{2}$
3. Find the value of x and y if $(x+y i)(2-3 i)=-13 i$

Exercise 3

1. Find the conjugate of each of the following complex numbers:
(a) $4+9 i$
(b) $-3-15 i$
(c) $\sqrt{3}-4 \mathrm{i}$
2. Find the conjugate of $(2-i)(4+7 i)$
3. If $z=2-i$ and $w=1+2 i$ express the following in the form $x+y i$:
(a) \bar{Z}
(b) $\overline{z+w}$
(c) $\bar{Z}+\bar{W}$
(d) $\overline{Z W}$
(e) $\overline{\bar{Z}}-\overline{\bar{W}}$

Exercise 4

1. Express the following in the form $x+y i$
(a) $\frac{4-9 i}{3}$
(b) $\frac{1}{3-i}$
(c) $\frac{5+i}{2-7 i}$
2. Simplify $\frac{2}{1-i}+\frac{3+i}{i}$
3. If $w=-1+6 i$ express $\frac{w+1}{w-i}$ in the form $x+y i$

Exercise 5

If $z=2-3 i$ and $w=1+4 i$, illustrate on an Argand diagram

1. z
2. w
3. $z+w$
4. $Z+w$
5. $2 z-w$

Answers

Exercise 1

1. (a) $3 i$
(b) $\sqrt{2} i$
(c) $\sqrt{15 i}$
(d) $5 \sqrt{2} i$
(e) $6 \sqrt{2} i$
2. (a) 1
(b) i
(c) 0
(d) $2 \mathrm{i}-1$
(e) 1
3.

(a) $\operatorname{Re} z=2 \quad / m z=7$
(b) $\operatorname{Re} z=10 \quad \operatorname{lm} z=-1$
(c) $\operatorname{Re} z=\pi \quad \operatorname{Im} z=3$
(d) $R e z=0 \quad \operatorname{Im} z=\frac{1}{6}$
(e) $R e z=-8 \quad I m z=0$
4.
(a) $x=4, y=9$
(b) $x=3, y=-1$
(c) $x=23, y=0$
(d) $x=0, y=-\sqrt{2}$
(e) $x=-5, y=1$

Exercise 2

1 (a) $2+3 i$
(b) $-10-2 i$
(c) $1-46 \mathrm{i}$
2. (a) $1+7 i$
(b) $-4+7 i$
(c) $-7-24 i$
$3 x=3, \quad y=-2$
(d) $7-24 i$
(e) 13

Exercise 3
1 (a) 4-9i
(b) $-3+15 i$
(c) $\sqrt{3}+4 i$
2. $15-10 i$
3. (a) $2+i$
(b) $3-\mathrm{i}$
(c) $3-\mathrm{i}$
(d) $4-3 i$
(e) $1-3 i$

Exercise 4

(a) $\frac{4}{3}-3 i$
(b) $\frac{3}{10}+\frac{1}{10} i$
(c) $\frac{3}{53}+\frac{37}{53} i$
2 2-2i
$3 \frac{15}{13}-\frac{3}{13} i$

Exercise 5

