STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

CN1.3: DE MOIVRE'S THEOREM

Integral Powers of Complex Numbers

De Moivre's theorem states that:

$$(cis\theta)^n = cis(n\theta)$$

We make use of this result to calculate an integral power of a complex number:

then
$$z = rcis\theta$$

then $z^n = r^n cis(n\theta)$

Examples: 1. Express (1-i)⁶ in the form x + yi

$$(1-i)^6 = \left[\sqrt{2}cis\left(\frac{-\pi}{4}\right)\right]^6 \quad \text{change to polar form}$$

$$= \left(\sqrt{2}\right)^6 \left[cis\left(6 \times \frac{-\pi}{4}\right)\right]^6 \quad \text{by DeMoivre's theorem}$$

$$= 8cis\left(\frac{-3\pi}{2}\right)$$

$$= 8i$$

2. Simplify $\frac{\left(\sqrt{3}-i\right)^6}{\left(1+i\right)^8}$ and give the answer in rectangular form

$$\sqrt{3} - i = 2 cis \left(-\frac{\pi}{6}\right)$$
 change to polar form
 $(\sqrt{3} - i)^6 = 64 cis \left(-\pi\right)$ by DeMoivre's theorem

and
$$1 + i = \sqrt{2}cis\frac{\pi}{4}$$
 change to polar form

$$(1+i)^8 = 16cis2\pi$$
 by De Moivre's theorem

$$\therefore \frac{\left(\sqrt{3}-i\right)^6}{\left(1+i\right)^8} = \frac{64cis(-\pi)}{16cis2\pi}$$

$$= \frac{64}{16}cis(-\pi-2\pi)$$

$$= 4cis(-3\pi)$$

$$= -4$$

See Exercise 1

Roots of a Complex Number

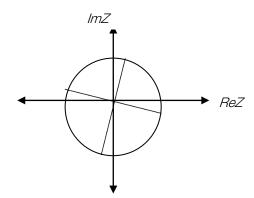
 $z^n = rcis\theta$ will have n solutions of the form

$$z^{\frac{1}{n}} = r^{\frac{1}{n}} cis\left(\frac{\theta + 2\pi k}{n}\right), k = 0, 1, \dots, n-1$$

Example: Solve $z^4 = 1 - \sqrt{3}i$

$$1-\sqrt{3}i=2cis\left(-\frac{\pi}{3}\right) \qquad \text{[change to polar form]}$$
 then $z^4=2cis\left(-\frac{\pi}{3}\right),\ 2cis\left(-\frac{\pi}{3}+2\pi\right),\ 2cis\left(-\frac{\pi}{3}+4\pi\right),\ 2cis\left(-\frac{\pi}{3}+6\pi\right)$ [as four solutions are required] ie $z^4=2cis\left(-\frac{\pi}{3}\right),\ 2cis\left(\frac{5\pi}{3}\right),\ 2cis\left(\frac{11\pi}{3}\right),\ 2cis\left(\frac{17\pi}{3}\right)$
$$\therefore \quad z=2^{\frac{1}{4}}cis\left(-\frac{\pi}{12}\right),\ 2^{\frac{1}{4}}cis\left(\frac{5\pi}{12}\right),\ 2^{\frac{1}{4}}cis\left(\frac{11\pi}{12}\right),\ 2^{\frac{1}{4}}cis\left(\frac{17\pi}{12}\right)$$

The solutions may be represented graphically:



NB: The solutions of $z^n = rcis\theta$ lie on a circle with centre the origin and radius $r^{\overline{n}}$ and they divide the circle into arcs of equal length. The symmetrical nature of the solutions can be used to find all solutions if one is known.

See Exercise 2

Exercises

Exercise 1

1. Evaluate giving your answers in polar form with $-\pi \leq \theta \leq \pi$

(a)
$$(\sqrt{3}+i)^3$$
 (b) $(1-i)^5$

(c) $\left(-2\sqrt{3} + 2i\right)^2$

2. Simplify each of the following giving the answer in polar form

(a)
$$(1+i)^4 (2-2i)^3$$

(b)
$$\frac{\left(2-2\sqrt{3}i\right)^4}{\left(-1+i\right)^6}$$

Exercise 2

1. Solve giving the answers in polar form with $-\pi \le \theta \le \pi$

(a)
$$z^3 = -1$$

(a) $z^3 = -1$ (b) $z^4 = 16i$ (c) $z^3 = \sqrt{6} - \sqrt{2}i$

2. If $\sqrt{3} + i$ is one solution of $z^3 = 8i$ use a diagram to find the other solutions in rectangular form.

Answers

Exercise 1

1. (a)
$$8cis\frac{\pi}{2}$$

(b)
$$2^{\frac{5}{2}} cis \frac{3\pi}{4}$$

1. (a)
$$8cis\frac{\pi}{2}$$
 (b) $2^{\frac{5}{2}}cis\frac{3\pi}{4}$ (c) $16cis\frac{-\pi}{3}$

2. (a)
$$2^{\frac{13}{2}}cis\left(\frac{\pi}{4}\right)$$
 (b) $32cis\left(\frac{\pi}{6}\right)$

(b)
$$32cis\left(\frac{\pi}{6}\right)$$

Exercise 2

1. (a)
$$cis\left(\frac{\pi}{3}\right)$$
, $cis\left(\pi\right)$, $cis\left(\frac{-\pi}{3}\right)$

(b)
$$2cis\left(\frac{\pi}{8}\right), 2cis\left(\frac{5\pi}{8}\right), 2cis\left(\frac{-7\pi}{8}\right), 2cis\left(\frac{-3\pi}{8}\right)$$

(c)
$$\sqrt{2}cis\left(-\frac{\pi}{18}\right)$$
, $\sqrt{2}cis\left(\frac{11\pi}{18}\right)$, $\sqrt{2}cis\left(\frac{-13\pi}{18}\right)$

2. $-\sqrt{3}+i$ and -2i